II B.Tech - II Semester - Regular Examinations - JULY 2022

ELECTROMAGNETIC FIELDS \& WAVES (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

[^0]
UNIT - I

1. a) Two uniform line charges of density $8 \mathrm{nC} / \mathrm{m}$ are located in a plane with $\mathrm{y}=0$ at $\mathrm{x}= \pm 8 \mathrm{~m}$. Determine the \boldsymbol{E} field at a point $\mathrm{P}(5,4,8) \mathrm{m}$.
b) Develop the electric field intensity at a point ' P ' due to infinite line charge distribution.

OR
2. a) Establish Gauss law in point form and integral form,
and hence deduce Laplace's and Poisson's equations. 7 M
b) Three parallel line charges $5 \mathrm{nC} / \mathrm{m}, 4 \mathrm{nC} / \mathrm{m}$ and $-6 \mathrm{nC} / \mathrm{m}$ respectively are located at $(0,0),(3,0)$ and $(0,4)$ m respectively. Determine electric flux density (\boldsymbol{D}) and electric filed intensity (\boldsymbol{E}) at $(3,4)$.

UNIT - II

3. a) Explain the concept of Magnetic vector potential.
b) An infinitely long straight conducting rod of radius ' a ' carries a current of \boldsymbol{I} in positive Z-direction. Using Ampere's circuital law, Determine \boldsymbol{H} in all regions and
sketch the variation of \boldsymbol{H} as a function of radial distance. If $\mathrm{I}=3 \mathrm{~mA}$ and $\mathrm{a}=2 \mathrm{~cm}$, determine \boldsymbol{H} and \boldsymbol{B} at $(0,1,0)$ and $(0,4,0)$.
4. a) Explain Biot-savart's law with necessary mathematical
expressions.
7 M
b) Make use of Ampere's circuital law and Biot-savart's law to determine the magnetic field intensity due to an infinite line current.

UNIT-III

5. a) Write Maxwell's equations in integral form and in word statements.
b) X-Z plane is a boundary between two dielectrics. Region $\mathrm{y}<0$ contains dielectric material with $\varepsilon_{r 1}=2.5$ while region $\mathrm{y}>0$ has dielectric with $\varepsilon_{r 2}=4$. If $\boldsymbol{E}=-30 a_{x}+5 a_{y}+70 a_{z} \mathrm{~V} / \mathrm{m}$, determine normal and tangential components of the \boldsymbol{E} field on both sides of the boundary.

OR
6. a) Derive the electric field boundary conditions between dielectric and conductor.
b) Show that the displacement current in a capacitor is equal to the conduction current.

UNIT - IV

7. a) What is poynting theorem? Derive the expression for poynting vector.
b) A manufacturer produces a ferrite material with 7 M

$$
\mu=750 \mu_{0}, \varepsilon=5 \varepsilon_{0}, \text { and } \sigma=10^{-6} \mathrm{~S} / \mathrm{m} \text { at } 10 \mathrm{MHz}
$$

i) Would you classify the material as lossless, lossy, or conducting? ii) Calculate β and λ.

OR
8. a) Given that $\boldsymbol{E}=40 \cos \left(10^{8} \mathrm{t}-3 \mathrm{x}\right) a_{y} \mathrm{~V} / \mathrm{m}$.
(i) Determine the direction of wave propagation.
(ii) The velocity of the wave and the wavelength.

Abstract

b) Explain skin depth and derive an expression for depth of penetration for good conductor.

UNIT - V

9. Define and distinguish between the terms perpendicular polarization, parallel polarization, for the case of reflection by a perfect conductor under oblique incidence.

OR
10. a) Obtain an expression for the power loss in a plane conductor in terms of the surface impedance.
b) Consider two dielectric media, where medium 1 is free space and medium 2 has $\varepsilon_{2}=3 \varepsilon_{0}$ and $\mu_{2}=\mu_{0}$,Analyse the reflection coefficient for a wave obliquely incident at $\theta_{1}=30^{\circ}$ for
i) Perpendicular Polarization
ii) Parallel Polarization

[^0]: Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
 2. All parts of Question must be answered in one place.

