II B.Tech - II Semester – Regular Examinations – JULY 2022

ELECTROMAGNETIC FIELDS & WAVES (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours	Max. Marks: 70
-------------------	----------------

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

<u>UNIT – I</u>

1.	a)	Two uniform line charges of density 8 nC/m are located	
		in a plane with $y = 0$ at $x = \pm 8m$. Determine the <i>E</i> field	
		at a point P (5, 4, 8) m.	7 M
	b)	Develop the electric field intensity at a point 'P' due to	
		infinite line charge distribution.	7 M
		OR	
2.	a)	Establish Gauss law in point form and integral form,	
		and hence deduce Laplace's and Poisson's equations.	7 M
	b)	Three parallel line charges 5 nC/m, 4 nC/m and	
		-6 nC/m respectively are located at (0,0), (3,0) and (0,4)	
		m respectively. Determine electric flux density (D) and	
		electric filed intensity (E) at $(3, 4)$.	7 M

<u>UNIT – II</u>

3.	a)	Explain the concept of Magnetic vector potential.	7 M
	b)	An infinitely long straight conducting rod of radius 'a'	
		carries a current of I in positive Z-direction. Using	
		Ampere's circuital law, Determine <i>H</i> in all regions and	

sketch the variation of H as a function of radial distance. If I=3 mA and a=2 cm, determine H and B at (0, 1, 0) and (0, 4, 0).

OR

- 4. a) Explain Biot-savart's law with necessary mathematical expressions.
 - b) Make use of Ampere's circuital law and Biot-savart's law to determine the magnetic field intensity due to an infinite line current.

UNIT-III

- 5. a) Write Maxwell's equations in integral form and in word statements.
 - b) X-Z plane is a boundary between two dielectrics. Region y<0 contains dielectric material with $\varepsilon_{r1}=2.5$ while region y>0 has dielectric with $\varepsilon_{r2}=4$.

If $E = -30a_x + 5a_y + 70a_z$ V/m, determine normal and tangential components of the *E* field on both sides of the boundary.

OR

6.	a)	Derive the electric field boundary conditions between	
		dielectric and conductor.	7 M
	b)	Show that the displacement surrant in a consister is	

b) Show that the displacement current in a capacitor is equal to the conduction current.7 M

<u>UNIT – IV</u>

7.	a)	What is poynting theorem? Derive the expression for	
		poynting vector.	7 M
	b)	A manufacturer produces a ferrite material with	7 M

7 M

7 M

7 M

7 M

7 M

 $\mu = 750\mu_0$, $\varepsilon = 5\varepsilon_0$, and $\sigma = 10^{-6}$ S/m at 10 MHz i) Would you classify the material as lossless, lossy, or conducting? ii) Calculate β and λ .

OR

- 8. a) Given that E = 40 cos (10⁸ t 3x)a_y V/m.
 (i) Determine the direction of wave propagation.
 (ii) The velocity of the wave and the wavelength.
 - b) Explain skin depth and derive an expression for depth of penetration for good conductor.7 M

$\underline{UNIT} - \underline{V}$

Define and distinguish between the terms perpendicular polarization, parallel polarization, for the case of reflection by a perfect conductor under oblique incidence.
 14 M

OR

- 10. a) Obtain an expression for the power loss in a plane conductor in terms of the surface impedance.
 - b) Consider two dielectric media, where medium 1 is free space and medium 2 has $\varepsilon_2 = 3\varepsilon_0$ and $\mu_2 = \mu_0$, Analyse the reflection coefficient for a wave obliquely incident at $\theta_1 = 30^\circ$ for
 - i) Perpendicular Polarization
 - ii) Parallel Polarization

7 M

7 M

7 M